NVIDIA RAPIDS™ cuGraph 能够提供将 RAPIDS 生态系统与热门的 python 图形库 NetworkX 相集成的加速图形分析库。RAPIDS cuGraph 的愿景是使图形分析无处不在,以便用户只需考虑分析而无需考虑技术或框架。
新款 NVIDIA GPU 的强大计算能力实现更快的加快图形分析速度。此外,GPU 的内部显存速率使 cuGraph 能够快速切换数据结构,满足分析需求,而不限于单一数据结构。
通过有效利用 GPU 中的大规模并行性,RAPIDS 的图形算法能够将大型图形的分析速度提高 1000 多倍。在单块 A100 GPU 上探索多达 2 亿个边缘节点,并在 DGX A100 集群上扩展至数十亿个边缘节点。
NVIDIA GPU 加速的端到端数据科学
NVIDIA RAPIDS 结合了执行高速 ETL、图形分析、机器学习和深度学习的能力。这套完全在 GPU 上执行数据科学流程的开源软件库和 API,可以将训练时间从几天缩短至几分钟。它依赖于 NVIDIA CUDA® 基元进行低级别计算优化,但通过用户友好型 Python 界面实现 GPU 并行结构和极高的显存带宽。
RAPIDS cuGraph 无缝集成到 RAPIDS 数据科学生态系统中,使数据科学家能够使用存储在 GPU DataFrame 中的数据轻松调用图形算法。借助 RAPIDS GPU DataFrame,数据可以通过一个类似 Pandas 的接口加载到 GPU 上,然后用于各种连接的机器学习和图形分析算法,而无需离开 GPU。这种级别的互操作性是通过 Apache Arrow 这样的库实现的。从数据准备到机器学习,再到深度学习,它可加速端到端流程。RAPIDS 和 DASK 使 cuGraph 能够扩展为多个 GPU,支持数十亿个边缘图形。