Python 的用户友好型高级编程语言和 Python 库(如 NumPy、Pandas 和 scikit-learn)已经得到数据科学家的广泛采用。
这些库是在大数据用例变得如此普遍之前开发的,没有强大的并行解决方案。Python 是单核计算的首选,但用户不得不为多核心或多计算机并行寻找其他解决方案。这会中断用户体验,还会让用户感到非常沮丧。
过去五年里,对 Python 工作负载扩展的需求不断增加,这导致了 Dask 的自然增长。Dask 是一种易于安装、快速配置的方法,可以加速 Python 中的数据分析,无需开发者升级其硬件基础设施或切换到其他编程语言。启动 Dask 作业所使用的语法与其他 Python 操作相同,因此可将其集成,几乎不需要重新写代码。
此外,由于拥有强大的网络建设堆栈,Python 受到网络开发者的青睐,Dask 可利用该堆栈构建一个灵活、功能强大的分布式计算系统,能够扩展各种工作负载。Dask 的灵活性使其能够从其他大数据解决方案(如 Hadoop 或 Apache Spark)中脱颖而出,而且它对本机代码的支持使得 Python 用户和 C/C++/CUDA 开发者能够轻松使用。
Dask 已被 Python 开发者社区迅速采用,并且随着 Numpy 和 Pandas 的普及而增长,这为 Python 提供了重要的扩展,可以解决特殊分析和数学计算问题。
Dask 的扩展性远优于 Pandas,尤其适用于易于并行的任务,例如跨越数千个电子表格对数据进行排序。加速器可以将数百个 Pandas DataFrame 加载到内存中,并通过单个抽象进行协调。
如今,Dask 由一个开发者社区管理,该社区涵盖数十家机构和 PyData 项目,例如 Pandas、Jupyter 和 Scikit-Learn。Dask 与这些热门工具的集成促使采用率迅速提高,在需要 Pythonic 大数据工具的开发者中采用率约达 20%。